Kalman Filters in Constrained Model Based Tracking
نویسندگان
چکیده
Model-based vision allows the recovery and tracking of the 3D position and orientation of a known object from a sequence of images. A Kalman filter can be used to improve the tracking stability with three main benefits. Firstly it is an optimal filter in the least squares sense, with the added advantage that the physical dynamics and constraints of the tracking problem can easily be built into the system model. Secondly the measurement model allows for uncertainty in the measurement of the recovered model position. Thirdly, data on the empirical error are generated which can, for example, be used to control the model matching process used in the tracking.
منابع مشابه
Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملConstrained Nonlinear Estimation of Road Friction Coefficient and Wheel Slip for Control of Anti-Lock Braking System
In designing the anti-lock braking system (ABS), some states and parameters of vehicle system such as road friction of coefficient and wheel slip should be estimated due to lack of cost effective and reliable sensors for direct measurement. Because of nonlinear characteristics of vehicle dynamics and tire forces, development of a nonlinear estimation algorithm is necessary. However, considerati...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملTracking using explanation-based modeling
We study the problem of tracking, namely, estimating the states of physical objects with time, from streams of noisy and unreliable observations. The most common model for the tracking problem is the generative model, which is the basis of solutions such as the Kalman filter and particle filters. In this paper, we consider a different formulation – an explanatory framework – for tracking, and w...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کامل